SBI PO Prelims-2021. SBPP-2021-100012 HINTS \& SOLUTIONS

ANSWER KEY				
1. (5)	21. (5)	41. (2)	61. (3)	81. (5)
2. (2)	22. (4)	42. (5)	62. (4)	82. (4)
3. (4)	23. (1)	43. (2)	63. (3)	83. (3)
4. (2)	24. (3)	44. (5)	64. (2)	84. (5)
5. (1)	25. (4)	45. (2)	65. (3)	85. (3)
6. (1)	26. (4)	46. (4)	66.(1)	86. (4)
7. (4)	27. (3)	47. (1)	67.(4)	87. (4)
8. (1)	28. (3)	48. (1)	68.(4)	88. (2)
9. (4)	29. (5)	49. (2)	69.(1)	89. (1)
10. (3)	30. (2)	50. (2)	70.(4)	90. (5)
11. (5)	31.(3)	51. (2)	71. (2)	91. (5)
12. (3)	32.(4)	52. (5)	72. (5)	92. (4)
13. (2)	33.(5)	53. (5)	73. (1)	93. (4)
14. (1)	34.(1)	54. (5)	74. (4)	94. (2)
15. (5)	35.(3)	55. (2)	75. (3)	95. (3)
16. (4)	36. (2)	56. (3)	$76 .(1)$	96. (3)
17. (3)	37. (2)	57. (1)	77.(2)	97. (4)
18. (1)	38. (2)	58. (3)	78.(4)	98. (2)
19. (3)	39. (1)	59. (1)	79.(3)	99. (1)
20. (2)	40. (2)	60. (1)	80.(5)	100. (2)

HINTS \& SOLUTIONS

1. (5)
2. (2)

Compulsion means the action or state of forcing or being forced to do something; constraint. Persuasion means the action or process of persuading someone or of being persuaded to do or believe something.
3. (4) In the first filler (1), (3), (4) are fit in the $2^{\text {nd }}$ filler only (2) and (4) can fit.
4. (2) Commendable means deserving praise.
5. (1) In first filler (1) and (5) are can be used but in the other only (1) and (2) can fit.
6. (1) Abhiram didn't meditate to have prosperity; he refused to sell the painting to the boy because the boy was the son of the new royal minister who had stolen Abhiram's father's fortune; and it is not mentioned that Abhiram had been a business man once .So all the options cannot be said about Abhiram.
7. (4) Read the 1st two sentences of the paragraph 3 ,"This was the only form of worship known to him".
8. (1) I and II are not true in context of the passage; (III) is, as evident from paragraphs 1 and 2.
9. (4) When Abhiram refused to sell his painting that only made the child want the picture even more and hence he sent a bagful of coins.
10. (3)
11. (5) Abhiram's 'fingers stilled to a halt' it was the first reaction.
12. (3) Audacity means rude or disrespectful behaviour; impudence hence insult is the word most similar in meaning.
13. (2) Idea means a thought or suggestion as to a possible course of action hence understanding is the word most similar in meaning.
14. (1) Gain means to obtain or secure (something wanted or desirable) hence lose is the word most opposite in meaning.
15. (5) Dogged means 'stubborn' and 'obstinate' hence unsure is the word most opposite in meaning.
16. (4) Use 'had' in place of 'has' as the reporting speech 'he found' is in the past.
17. (3) 'not only' should be used before 'from'.
18. (1) Use 'other' after ' $n o$ '.
19. (3) Use of 'with you' is superfluous here.
20. (2) Use 'has been' instead of 'had been'.
21. (5)
22. (4)
23. (1)
24. (3)
25. (4)
26. (4)
27. (3)

There are two clauses joined by 'and': (i) human beings still cannot control weather; (ii) (Human beings) probably (will) never be able to do so. As the verb 'cannot control' cannot be common to both clauses, a suitable verb has to be inserted-that is 'will'.
The use of the continuous verb 'suppressing' necessitates 'suggesting', or else, the two verbs will not agree in tense (the sentence conveys that 'They have made a futile attempt of suppressing the truth' and 'They have made a futile attempt of suggesting falsehood').
29. (5) No correction required
30. (2) Use of the 'past perfect' necessitates a past tense-'there were reports'. See this sentence: 'From time to time, there have been reports of how children have tried to imitate their favourite hero and landed in trouble.'
31.(3) $3 \quad 14 \quad 39 \quad 84 \quad 155$
$=n^{3}+n^{2}+n \quad$ put $n=1,2,3,4 \ldots$
$6^{\text {th }}$ term $=216+36+6=258$
32.(4) $+\left(1^{2}+2\right),+\left(3^{2}+4\right),\left(5^{2}+6\right),+\left(7^{2}+8\right)+\left(9^{2}+10\right)$
$109+91=200$.
33.(5) $\times 1+1, \times 2-2, \times 3+3, \times 4-4, \times 5+5$
$440 \times 5+5=2200+5=2205$.
$\times 1.5, \times 2, \times 2.5, \times 3, \times 3.5$
$540 \times 3.5=1890$
35.(3) $+55,-45,+35,-25,+15$
$170+15=185$.
36. (2) Let the speed of train be $x \mathrm{~km} / \mathrm{hr}$.

Then, $\frac{600}{x}=\frac{600}{x+5}+4$
$\Rightarrow 600\left[\frac{5}{x(x+5)}\right]=4$
$\Rightarrow x(x+5)=750=25 \times 30$
$\Rightarrow x=25 \mathrm{~km} / \mathrm{hr}$
37. (2) S.I for two years $=$ Rs. 200
S.I for one year $=$ Rs. 100
C.I for two year $=$ Rs. 220
\Rightarrow Rs. 20 is the interest on Rs. 100
for one year.
If interest is Rs. 20, then amount
= Rs. 100
If interest is Rs.100, then Amount
$=\frac{100}{20} \times 100=$ Rs. 500
38. (2) The possible ways are as follows:
(i) 1 red ball out of the three and 5 blue balls out of the seven
(ii) 2 red balls out of the three and 4 blue balls out of the seven

Therefore total number of ways in which a random sample of six balls can be drawn
$={ }^{3} C_{1} \times{ }^{7} C_{5}+{ }^{3} C_{2} \times{ }^{7} C_{4}=168$.
39. (1) Total number of cases when two dice are thrown simultaneously $=6 \times 6=36$

Favourable number of cases of getting a sum of $6=5(1,5 ; 2,4 ; 3,3 ; 4,2 ; 5,1)$
Hence, required probability $=\frac{5}{36}$.
40. (2) Let the rational number be $\frac{p}{q}$
$\therefore q=p+3$
$\therefore \frac{p+7}{p+3-2}=2 \Rightarrow p+7=2 p+2$
$\Rightarrow p=5$
\Rightarrow Given rational number $=\frac{5}{8}$.
41. (2) Required ratio $=\frac{450 \times \frac{30}{100} \times \frac{7}{15}+400 \times \frac{18}{100} \times \frac{5}{12}}{450 \times \frac{30}{100} \times \frac{8}{15}+400 \times \frac{18}{100} \times \frac{7}{12}}$
$\frac{63+30}{72+42}=\frac{93}{114}$
$=\frac{31}{38}$
42. (5) Students enrolled for Football and below the age of 15
$=200 \times \frac{38}{100} \times \frac{1}{19}=4$
Female below the age of $15=\frac{80}{100} \times 4=2$.
Number of female students enrolled for football who are above 15 years
$=200 \times \frac{38}{100} \times \frac{10}{19}-2=40-2=38$.
43. (2) Male enrolled for Football in Govt. Inter college and MPVM
$=200 \times \frac{38}{100} \times \frac{9}{19}+500 \times \frac{24}{100} \times \frac{5}{24}=36+25=61$.
Female enrolled for Football in Govt. Inter college and MPVM
$=200 \times \frac{38}{100} \times \frac{10}{19}+500 \times \frac{24}{100} \times \frac{19}{24}=40+95=135$.
Difference $=135-61=74$.
44. (5) Number of students not enrolled for Football in Play way Angles School, Govt. Inter college and MPVM
$=450 \times \frac{70}{100}+200 \times \frac{62}{100}+500 \times \frac{74}{100}$
$=315+124+380=819$.
Average $=\frac{819}{3}=273$.
45. (2) Students enrolled for Football in Govt. Inter college and DPS $=400 \times \frac{18}{100}+200 \times \frac{38}{100}=72+76=148$.
Students enrolled for Football in Play Way Angle School and MPVM
$=450 \times \frac{30}{100}+500 \times \frac{24}{100}=135+120=255$.
Required percentage
$=\frac{255-148}{255} \times 100=\frac{107}{255} \times 100=41.96 \% \approx 42 \%$.
46. (4) Speed of $\operatorname{train}=\frac{150}{15}=10 \mathrm{~m} / \mathrm{sec}$.

Let speed of second train $=x \mathrm{~m} / \mathrm{sec}$
$\therefore(10+\mathrm{x})=\frac{150+150}{8}$
$10+x=\frac{300}{8}$
$\mathrm{x}=\frac{55}{2} \mathrm{~m} / \mathrm{sec}=\frac{55}{2} \times \frac{18}{5} \mathrm{~km} / \mathrm{hr}$
$=11 \times 9=99 \mathrm{~km} / \mathrm{hr}$
47. (1) Walk + Ride $=8 \mathrm{hr}$.
$2 \times$ Ride $=6 \mathrm{hr}$
$\therefore 2 \times$ walk $=10 \mathrm{hr}$
48. (1) Due to stoppages, it cover 5 km less

Time taken to cover $5 \mathrm{~km}=\left(\frac{5}{50} \times 60\right) \mathrm{min}$ $=6$
49. (2) $5!=5 \times 4 \times 3 \times 2 \times 1=120$.
50. (2) Probability $=\frac{4}{36}=\frac{1}{9}$.
51. (2) $24.424+5.656+1.131+0.089=$?
? $=31.3$
52. (5)
$\frac{23}{7}-\frac{29}{14}+\frac{8}{7}-\frac{29}{14}=$?
$?=\frac{2}{7}$
53. (5) $0.001-0.0001+0.01=$?
? $=0.0109$
54. (5) $\sqrt{25 \times 14-42+(4)^{?}}=18$
$308+(4)^{?}=324$
$4^{?}=16$
? $=2$
55. (2) $454.58+121.48-(376.89+95.42)=$?
?=576.03-472.31 = 103.72
56. (3) The word HAPPY consists of 5 letters and ' P ' comes twice.
\therefore Number of arrangements $=\frac{5!}{2!}$
$=\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1}=60$
57. (1)

Ratio of shares
$=7 \mathrm{x} \times 12: 11 \mathrm{x} \times 12: 11 \mathrm{x} \times 6$
$=14: 22: 11$
Sum of ratios $=14+22+11=47$
\therefore A's share $=\frac{14}{47} \times 13160$
= Rs 3920
58. (3)

Breadth of rectangle $=x$ metre
Length $=(x+6)$ metre
67.(4)
I. $\mathrm{A} \geq \mathrm{C}$ (False)
II. $\mathrm{P} \geq \mathrm{X}$ (False)
$\therefore 2(\mathrm{x}+6+\mathrm{x})=84$
$\Rightarrow 2 \mathrm{x}=42-6=36$
$\Rightarrow \mathrm{x}=18$
\therefore Length $=18+6=24$ metre
\therefore Area of rectangle
$=$ Length \times Breadth
$=18 \times 24$
$=432$ sq. metre
59. (1) \quad Rs. S.I. $=\frac{\text { Principal } \times \text { Time } \times \text { Rate }}{100}$
$=\frac{12000 \times 3 \times 10}{100}=$ Rs. 3600
C.I. $=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}-1\right]$
$=12000\left[\left(1+\frac{10}{100}\right)^{3}-1\right]$
$=12000\left[\left(\frac{11}{10}\right)^{3}-1\right]$
$=12000\left(\frac{1331}{1000}-1\right)$
$=12000 \times \frac{331}{1000}=$ Rs. 3972
Required Difference $=3972-3600=$ Rs. 372
Or;
Required Difference $=P\left(\frac{R}{100}\right)^{2} \times\left(\frac{300+R}{100}\right)$
$=12000\left(\frac{10}{100}\right)^{2} \times \frac{310}{100}$
$=372$
60. (1) Pre-determined amount for donation $=$ Rs. x (let)
$\therefore \frac{\mathrm{x} \times 75}{100}=6900$
$\Rightarrow x=\frac{6900 \times 100}{75}$
= Rs. 9200
$\therefore 20 \%$ of monthly salary $=9200$
\Rightarrow Monthly salary $\times \frac{20}{100}=9200$
\Rightarrow Monthly salary $=$ Rs. $\frac{9200 \times 100}{20}=$ Rs. 46000
61. (3) $\quad \frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times(1000)^{3}}{(2197)^{3}} \times 1.3 \times 1.3 \times 1.3=(1.3)$
$\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300=(1.3)^{?-2}$
$\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300=(1.3)^{?-2}$
$\Rightarrow 1.69=(1.3)^{?-2}$
$(1.3)^{2}=(1.3)^{?-2}$
$2=$? -2
62. (4) $\begin{aligned} & ?=4 \\ & \frac{68}{100} \times 1288+\frac{26}{100} \times 734-215=? \\ & 875.84+190.84-215=?\end{aligned}$
$875.84+190.84-215=$?
$1066.68-215=$?
? ≈ 850
63. (3) $75 \times 35 \div 26=? \div 13$
? ≈ 1320.
64. (2) $107 \times 79-2916=\sqrt{?}+5476$
$8453-2916=\sqrt{?}+5476$
$\sqrt{?}=61$
$?=3721$
65. (3) $\left.\quad \begin{array}{l}?=3721 \\ \\ \\ 0.64 \times 0.64 \times 0.64 \times 0.64 \\ 0.512 \times 0.512 \times 0.512\end{array} \times(0.8)^{?+3} 10.8\right)^{4}=(0.8)^{?+3}$
$0.512=(0.8)^{?+3}$
$(0.8)^{3}=(0.8)^{?+3}$
$3=?+3$
? $=0$
81. (5)
82. (4)
83. (3)
84. (5)
85. (3)
I. $\mathrm{U}>\mathrm{Z}$ (True)
II. $V>Z$ (False)
80.(5)
68.(4)
69.(1)
70.(4)

71-75.

Floor	Person	Cars
7	I	Ferrari
6	M	Ford
5	H	Safari
4	K	Alto
3	L	Centro
2	G	Nano
1	J	Swift

71. (2)
72. (5)
73. (1)
74. (4)
75. (3)
76.(1)
77.(2)
78.(4)
79.(3)
I. $\mathrm{P} \geq \mathrm{D}$ (False)
II. $\mathrm{H}>\mathrm{A}$ (False)
I. $\mathrm{Z}>\mathrm{W}$ (True)
II. A $<$ T (False)
I. $Y<N$ (False)
II. $\mathrm{Y}=\mathrm{N}$ (False)

ERHBMT
 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
 \% 1 @ \$ 6 ©
 PQGALE
 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ 72 \# 89%

But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant.
So, the code is : 72 \# 897
EMTAHA
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
\%6⑧@8
Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged.
So, the code is : 86 © 8 @ \%.
BQRLHA
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
\$219@8
But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant.
So, the code is : \$ 219 @ \$
RGMALB
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
81-85.

86-90.

Akshay	Ko
Salman	Ti
Katrina	Cu
Kareena	De
Karishma	Pa
Karan	Su
Hrithik/ranbir/kajol	$\mathrm{Mo} / \mathrm{je} / \mathbf{p e}$

86. (4)
87. (4)
88. (2)
89. (1)
90. (5)

91-95.

91. (5)
92. (4)
93. (4)
94. (2)
95. (3)
96. (3)

97. (4) TEACHER
98. (2)

4
99. (1)
100. (2)

