SBI PO Prelims-2021. SBPP-2021-100012 HINTS & SOLUTIONS

ANSWER KEY

1. (5)	21. (5)	41. (2)	61. (3)	81. (5)
2. (2)	22. (4)	42. (5)	62. (4)	82. (4)
3. (4)	23. (1)	43. (2)	63. (3)	83. (3)
4. (2)	24. (3)	44. (5)	64. (2)	84. (5)
5. (1)	25. (4)	45. (2)	65. (3)	85. (3)
6. (1)	26. (4)	46. (4)	66.(1)	86. (4)
7. (4)	27. (3)	47. (1)	67.(4)	87. (4)
8. (1)	28. (3)	48. (1)	68.(4)	88. (2)
9. (4)	29. (5)	49. (2)	69.(1)	89. (1)
10. (3)	30. (2)	50. (2)	70.(4)	90. (5)
11. (5)	31.(3)	51. (2)	71. (2)	91. (5)
12. (3)	32.(4)	52. (5)	72. (5)	92. (4)
13. (2)	33.(5)	53. (5)	73. (1)	93. (4)
14. (1)	34.(1)	54. (5)	74. (4)	94. (2)
15. (5)	35.(3)	55. (2)	75. (3)	95. (3)
16. (4)	36. (2)	56. (3)	76.(1)	96. (3)
17. (3)	37. (2)	57. (1)	77.(2)	97. (4)
18. (1)	38. (2)	58. (3)	78.(4)	98. (2)
19. (3)	39. (1)	59. (1)	79.(3)	99. (1)
20. (2)	40. (2)	60. (1)	80.(5)	100. (2)

HINTS & SOLUTIONS

1. (5)

- 2. (2) **Compulsion** means the action or state of forcing or being forced to do something; constraint. **Persuasion** means the action or process of persuading someone or of being persuaded to do or believe something.
- 3. (4) In the first filler (1), (3), (4) are fit in the 2nd filler only (2) and (4) can fit.
- 4. (2) Commendable means deserving praise.
- 5. (1) In first filler (1) and (5) are can be used but in the other only (1) and (2) can fit.
- 6. (1) Abhiram didn't meditate to have prosperity; he refused to sell the painting to the boy because the boy was the son of the new royal minister who had stolen Abhiram's father's fortune; and it is not mentioned that Abhiram had been a business man once .So all the options cannot be said about Abhiram.
- 7. (4) Read the 1st two sentences of the paragraph 3 ,"This was the only form of worship known to him".
- 8. (1) I and II are not true in context of the passage; (III) is, as evident from paragraphs 1 and 2.
- 9. (4) When Abhiram refused to sell his painting that only made the child want the picture even more and hence he sent a bagful of coins.

DEGREE + BANK JOB COACHING

10. (3) He fell tormented, refer to the 3rd paragraph of the passage, "the face of his God was beginning to look more and more like the minister".

() RAC

- 11. (5) Abhiram's 'fingers stilled to a halt' it was the first reaction.
- Audacity means rude or disrespectful behaviour; impudence hence insult is the word most similar in meaning.
- 13. (2) Idea means a thought or suggestion as to a possible course of action hence understanding is the word most similar in meaning.
- Gain means to obtain or secure (something wanted or desirable) hence lose is the word most opposite in meaning.
- 15. (5) Dogged means 'stubborn' and 'obstinate' hence unsure is the word most opposite in meaning.
- 16. (4) Use 'had' in place of 'has' as the reporting speech 'he found' is in the past.
- 17. (3) 'not only' should be used before 'from'.
- 18. (1) Use 'other' after 'no'.
- 19. (3) Use of 'with you' is superfluous here.
- 20. (2) Use 'has been' instead of 'had been'.
- 22. (4)

21. (5)

23. (1) 24. (3) 25. (4) 26. (4)

- Without an 'is' after 'have', the phrase, 'The most important quality' is left dangling: there is nothing to connect it to the rest of the sentence.
- 27. (3) There are two clauses joined by 'and': (i) human beings still cannot control weather; (ii) (Human beings) probably (will) never be able to do so. As the verb 'cannot control' cannot be common to both clauses, a suitable verb has to be inserted-that is 'will'.
- 28. (3) The use of the continuous verb 'suppressing' necessitates 'suggesting', or else, the two verbs will not agree in tense (the sentence conveys that 'They have made a futile attempt of suppressing the truth' and 'They have made a futile attempt of suggesting falsehood').
- 29. (5) No correction required
- 30. (2) Use of the 'past perfect' necessitates a past tense-'there were reports'. See this sentence: 'From time to time, there have been reports of how children have tried to imitate their favourite hero and landed in trouble.'
- 32.(4) $+(1^2+2), +(3^2+4), (5^2+6), +(7^2+8) + (9^2+10)$ 109 + 91 = 200.
- 33.(5) $\times 1 + 1, \times 2 2, \times 3 + 3, \times 4 4, \times 5 + 5$ 440 $\times 5 + 5 = 2200 + 5 = 2205.$
- 34.(1) ×1.5, ×2, ×2.5, ×3, ×3.5 540 × 3.5 = 1890
- 35.(3) +55, -45, +35, -25, +15 170 + 15 = 185.

35. (2) Let the speed of train be x lm/nr.

$$\operatorname{Them}_{x} \frac{100}{x} - \frac{400}{x} + \frac{1}{x} + \frac{$$

Angles School, Govt. Inter college and MPVM

DEGREE + BANK JOB COACHING

			I. $A \ge C$ (False)
58. (3)	Breadth of rectangle = x metre	67.(4)	
	Length = (x+ 6) metre		II. $P \ge X$ (False)
	$\therefore 2(x+6+x) = 84$	68.(4)	I. $P \ge D$ (False)
	$\Rightarrow 2x = 42 - 6 = 36$	08.(4)	II. $H > A$ (False)
	\Rightarrow x= 18		
	: Length = $18 + 6 = 24$ metre	69.(1)	I. Z > W (True)
	∴ Area of rectangle	. ,	II. A < T (False)
	-		
	$=$ Length \times Breadth	70.(4)	I. Y < N (False)
	$= 18 \times 24$		II. Y = N (False)
	= 432 sq. metre	71– 75.	Floor Person Cars
	Principal \times Time \times Rate		7 I Ferrari
59. (1)	Rs. S. I. = 1000 P I I I I I I I I I I I I I I I I I		6 M Ford
	$=\frac{12000 \times 3 \times 10}{100}$ = Rs. 3600		
			5 H Safari
	$C.I. = P\left[\left(1 + \frac{R}{100}\right)^T - 1\right]$		4 K Alto
			3 L Centro
	$= 12000 \left[\left(1 + \frac{10}{100} \right)^3 - 1 \right]$		2 G Nano
	$= 12000 \left[\left(1 + \frac{1}{100} \right)^{-1} \right]$		1 J Swift
	$[(11)^3]$	74 (2)	
	$= 12000 \left[\left(\frac{11}{10} \right)^3 - 1 \right]$	71. (2)	
	L 1	72. (5)	
	$= 12000 \left(\frac{1331}{1000} - 1\right)$	73. (1)	
	$= 12000 \times \frac{331}{1000} = \text{Rs. } 3972$	74. (4)	
		75. (3)	
	Required Difference = 3972 – 3600 = Rs. 372	76.(1)	ERHBMT
	Or;	70.(1)	
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	Required Difference = $P\left(\frac{R}{100}\right)^2 \times \left(\frac{300+R}{100}\right)$	BA.	%1@\$6©
		77.(2)	PQGALE
	$=12000\left(\frac{10}{100}\right)^2 \times \frac{310}{100}$	77.(2)	-11111
	= 372		* * * * * * *
60. (1)	Pre-determined amount for donation = Rs. x (let)		7 2 # 89%
	$\therefore \frac{\mathbf{x} \times 75}{100} = 6900$		But here first letter is a consonant and the last letter is a
			But here mist letter is a consoliant and the last letter is a
		8	vowel, so both are to be coded as the code for the
	$\Rightarrow x = \frac{6900 \times 100}{75}$	8	vowel, so both are to be coded as the code for the consonant.
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200	1	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7
	$\Rightarrow x = \frac{6900 \times 100}{75}$	78.(4)	vowel, so both are to be coded as the code for the consonant.
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} = 9200$	78.(4)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} = 9200$	78.(4)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} = 9200$	78.(4)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} = 9200$ $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$	78.(4)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group
51. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200 \times 100$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^3}{20} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$	78.(4)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged.
51. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200 \times 100$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^3}{20} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$		vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %.
51. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} = 9200$ $\Rightarrow \text{ Monthly salary} = 8s. \frac{9200 \times 100}{20} = 8s. 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^{\$}}{(2197)^{\$}} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2107} \times \frac{1.69}{2107} \times \frac{1.69}{2107} \times 1.69 \times 1300 \times 1300 = (1.3)^{7-2}$	78.(4) 79.(3)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged.
51. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} = 9200$ $\Rightarrow \text{ Monthly salary} = 8.5 + 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs. } \frac{9200 \times 100}{20} = \text{Rs. } 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{2197} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$		 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 E M T A H A J J J J J J J J % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. B Q R L H A
61. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{2197} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{1300} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$		vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJJ
61. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} = 9200$ $\Rightarrow \text{ Monthly salary} = 8s. \frac{9200 \times 100}{20} = 8s. 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^{\$}}{(2197)^{\$}} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2107} \times \frac{1.69}{2107} \times \frac{1.69}{2107} \times 1.69 \times 1300 \times 1300 = (1.3)^{7-2}$		 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8
51. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} = 9200$ $\Rightarrow \text{ Monthly salary} = 8.5 + 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} = 9200 \times 100 = 1.69 \times 1.69 \times 1.69 \times 100^{-2} \text{ s} \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$		 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8
51. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = 7 - 2$ $7 = 4$		 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = 7 - 2$ $7 = 4$		 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^3}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = 7 - 2$		 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
61. (3) 62. (4)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$	0F ^{79.(3)}	 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$		 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $1066.68 - 215 = ?$	0F ^{79.(3)}	 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
52. (4)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^{8}}{(2197)^{8}} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^{2} = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$	0F ^{79.(3)}	 vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
52. (4) 53. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{2197} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$	79.(3) 80.(5)	<pre>vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$</pre>
52. (4) 53. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$	0F ^{79.(3)}	<pre>vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$</pre>
52. (4) 53. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{2197} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$	79.(3) 80.(5)	<pre>vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$</pre>
52. (4) 53. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{2197} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$	79.(3) 80.(5)	<pre>vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$</pre>
52. (4) 53. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{2197} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$	79.(3) 80.(5)	<pre>vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$</pre>
52. (4) 53. (3) 54. (2)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^3}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{(2197)^8} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$	79.(3) 80.(5)	<pre>vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$</pre>
52. (4) 53. (3) 54. (2)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^3}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{(2197)^8} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$	79.(3) 80.(5)	<pre>vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$</pre>
62. (4) 63. (3) 64. (2)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^3}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$ $\frac{0.64 \times 0.64 \times 0.64 \times 0.64}{0.512 \times 0.512 \times 0.512} \times (0.8)^4 = (0.8)^{?+3}$	79.(3) 80.(5)	<pre>vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJJ % 6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$</pre>
62. (4) 63. (3) 64. (2)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$ $\frac{0.64 \times 0.64 \times 0.64 \times 0.64}{0.512 \times 0.512 \times 0.512}} \times (0.8)^4 = (0.8)^{?+3}$ $(0.8)^3 = (0.8)^{?+3}$	79.(3) 80.(5) 81–85.	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ %6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 19 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$ M(Blue) P(Green) N(Pink) O(Yellow) J
62. (4)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{(2197)^8} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$ $\frac{0.64 \times 0.64 \times 0.64}{0.512 \times 0.512} \times (0.8)^4 = (0.8)^{?+3}$ $(0.8)^3 = (0.8)^{7+3}$ $(0.8)^3 = (0.8)^{7+3}$ $3 = ? + 3$	79.(3) 80.(5) 81–85. 81. (5)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ %6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 19 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$ M(Blue) P(Green) N(Pink) O(Yellow) J
62. (4) 63. (3) 64. (2) 65. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{2197} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$ $\frac{0.64 \times 0.64 \times 0.64 \times 0.64}{0.512 \times 0.512} \times (0.8)^4 = (0.8)^{?+3}$ $(0.8)^3 = (0.8)^{7+3}$ $3 = ? + 3$ $? = 0$	79.(3) 80.(5) 81–85. 81. (5) 82. (4)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ %6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 19 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$ M(Blue) P(Green) N(Pink) O(Yellow) J
62. (4) 63. (3) 64. (2)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^3}{2107} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$ $\frac{0.64 \times 0.64 \times 0.64 \times 0.64}{0.512 \times 0.512 \times 0.512} \times (0.8)^4 = (0.8)^{?+3}$ $(0.8)^3 = (0.8)^{?+3}$ $3 = ? + 3$ $? = 0$ $I. U > Z (True)$	79.(3) 80.(5) 81–85. 81. (5) 82. (4) 83. (3)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ %6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$ M(Blue) P(Green) N(Pink) O(Yellow) J
62. (4) 63. (3) 64. (2) 65. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^8}{2197} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $875.84 + 190.84 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$ $\frac{0.64 \times 0.64 \times 0.64 \times 0.64}{0.512 \times 0.512} \times (0.8)^4 = (0.8)^{?+3}$ $(0.8)^3 = (0.8)^{7+3}$ $3 = ? + 3$ $? = 0$	79.(3) 80.(5) 81–85. 81. (5) 82. (4)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ %6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 1 9 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$ M(Blue) P(Green) N(Pink) O(Yellow) J
62. (4) 63. (3) 64. (2) 65. (3)	$\Rightarrow x = \frac{6900 \times 100}{75}$ = Rs. 9200 $\Rightarrow \text{ Monthly salary} \times \frac{20}{100} = 9200$ $\Rightarrow \text{ Monthly salary} = \text{Rs.} \frac{9200 \times 100}{20} = \text{Rs.} 46000$ $\frac{1.69 \times 1.69 \times 1.69 \times 1.69 \times (1000)^3}{2107} \times 1.3 \times 1.3 \times 1.3 \times 1.3 = (1.3)^{7-2}$ $\Rightarrow \frac{1.69}{2197} \times \frac{1.69}{2197} \times \frac{1.69}{2197} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow \frac{1}{1300} \times \frac{1}{1300} \times \frac{1}{1300} \times 1.69 \times 1300 \times 1300 \times 1300 = (1.3)^{7-2}$ $\Rightarrow 1.69 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $(1.3)^2 = (1.3)^{7-2}$ $2 = ? - 2$ $? = 4$ $\frac{68}{100} \times 1288 + \frac{26}{100} \times 734 - 215 = ?$ $1066.68 - 215 = ?$ $? \approx 850$ $75 \times 35 \div 26 = ? \div 13$ $? \approx 1320.$ $107 \times 79 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $8453 - 2916 = \sqrt{?} + 5476$ $\sqrt{?} = 61$ $? = 3721$ $\frac{0.64 \times 0.64 \times 0.64 \times 0.64}{0.512 \times 0.512 \times 0.512} \times (0.8)^4 = (0.8)^{?+3}$ $(0.8)^3 = (0.8)^{?+3}$ $3 = ? + 3$ $? = 0$ $I. U > Z (True)$	79.(3) 80.(5) 81–85. 81. (5) 82. (4) 83. (3)	vowel, so both are to be coded as the code for the consonant. So, the code is : 7 2 # 8 9 7 EMTAHA JJJJJJ %6 © 8 @ 8 Since, here both the first and the last letter of the group are vowels, so their codes are to be interchanged. So, the code is : 8 6 © 8 @ %. BQRLHA JJJJJJ \$ 2 19 @ 8 But here first letter is a consonant and the last letter is a vowel, so both are to be coded as the code for the consonant. So, the code is : \$ 2 19 @ \$ RGMALB JJJJJJJ 1 # 6 8 9 \$ M(Blue) P(Green) N(Pink) O(Yellow) J

DEGREE + BANK JOB COACHING

