SBI PO Preliminary -2021. SBPP-2021-100014 HINTS \& SOLUTIONS

ANSWER KEY				
1. (5)	21. (2)	41. (5)	61. (1)	81. (3)
2. (1)	22. (4)	42. (2)	62. (1)	82. (4)
3. (3)	23. (1)	43. (4)	63. (1)	83. (5)
4. (3)	24. (3)	44. (1)	64. (3)	84. (3)
5. (1)	25. (5)	45. (3)	65. (4)	85. (1)
6. (2)	26. (3)	46. (5)	66. (1)	86. (2)
7. (2)	27. (2)	47. (2)	67. (1)	87. (4)
8. (4)	28. (5)	48. (4)	68. (5)	88. (1)
9. (4)	29. (4)	49. (2)	69. (5)	89. (3)
10. (3)	30. (5)	50. (3)	70. (4)	90. (1)
11. (3)	31. (2)	51. (1)	71. (1)	91. (3)
12. (5)	32. (5)	52. (2)	72. (4)	92. (4)
13. (4)	33. (4)	53. (5)	73. (4)	93. (5)
14. (5)	34. (3)	54. (3)	74. (3)	94. (1)
15. (4)	35. (3)	55. (2)	75. (1)	95. (2)
16. (2)	36. (2)	56. (3)	76. (1)	96. (1)
17. (5)	37. (2)	57. (5)	77. (1)	97. (3)
18. (1)	38. (1)	58. (4)	78. (2)	98. (4)
19. (3)	39. (2)	59. (4)	79. (3)	99. (2)
20. (4)	40. (1)	60. (2)	80. (2)	100. (4)

HINTS \& SOLUTIONS

1. (5) No error.
2. (1) replace 'sight' with 'sighted'.
3. (3) add 'the' before 'emerging'.
4. (3) replace 'if' with 'but'.
5. (1) replace 'have' with 'has'.
6. (2)
7. (2)
8. (4)
9. (4)
10. (3)
11. (3)
12. (5)
13. (4)
14. (5)
15. (4)
16. (2)
17. (5)
18. (1)
19. (3)
20. (4)
21. (2) 'rises' fits the blank appropriately.
22. (4) 'necessity' fits the blank appropriately.
23. (1) 'prevents' fits the blank appropriately.
24. (3) 'associated' fits the blank appropriately.
25. (5) contribute' fits the blank appropriately.
26. (3) 'regarded' fits the blank appropriately.
27. (2) 'impacts' fits the blank appropriately.
28. (5) 'raised' fits the blank appropriately.
29. (4) 'working' fits the blank appropriately.
30. (5) 'reluctant' fits the blank appropriately.
31. (2) $9,11,15, ?, 39,71$
$9 \times 1+2 \Rightarrow 11$
$11 \times 1+2^{2} \Rightarrow 15$
$15 \times 1+2^{3} \Rightarrow 15 \times 1+8=23$
$23 \times 1+2^{4} \Rightarrow 39$
32. (5)

33. (4)

34. (3) $\quad \frac{2}{3} \pi r^{3}: \pi r^{2} h: \frac{1}{3} \pi r^{2} h, \quad$ Since $=r=h$
$\therefore 2: 3: 1$
35. (2) $\frac{1}{3} \mathrm{x}-\frac{1}{4} \mathrm{x}=8, \quad=\frac{\mathrm{x}}{12}=8 \quad \therefore \mathrm{x}=96$ litres
36. (2)
$2 \times(4)^{2}: 7 \times(3)^{2}$
$\therefore 32: 63$
37. (1)
$x-27=\frac{2}{5} x \quad \Rightarrow 3 x=27 \times 5 \Rightarrow x=9 \times 5=45$
$\therefore \frac{\mathrm{x}}{3}=45 \times \frac{1}{3}=15$
38. (2) Let ' x ' litres water is added
$\therefore \frac{60}{30+\mathrm{x}}=\frac{6}{4}=\frac{3}{2}, \quad \therefore 120=90+3 \mathrm{x}$
$\therefore x=\frac{30}{3}=10$ litres.
39. (1) $\frac{261}{14} \times 81-53=(?)^{2}$
$\Rightarrow 729-53=(?)^{2}$

$$
\Rightarrow 676=(?)^{2} \Rightarrow ?=26
$$

41. (5) $\frac{23}{46} \times \frac{74}{10}+729-251=3.7+729-251=481.7$
42. (2) $5+9-6 \sqrt{5}=?-4 \sqrt{5}-2 \sqrt{5}$
$\Rightarrow 5+9-6 \sqrt{5}=?-6 \sqrt{5} \Rightarrow ?=14$
43. (4) $\frac{\left(4^{2} \times 4\right)^{3}}{4^{5}} \times\left(4^{2}\right)^{2}=(4)^{\text {? }}$
$\Rightarrow \frac{4^{9} \times 4^{7}}{4^{5}}=(4)^{?} \Rightarrow ?=8$
44. (1) If the expenditure of the Company A in 2007 is x lakh, then
$x+x \times \frac{50}{100}=630000$
$x=` 420000$
45. (3) If expenditure is Rs. x lakh, then
$35=\frac{3185}{x} \times 100$
$35 x=3185=>\times=\frac{3185}{35}=91$ lakh
46. (5) Average per cent profit of Company A over all the years together
$=\frac{45+40+35+50+45+35}{6}=\frac{250}{6}=41.66=42$
47. (2) For Company A,
$45=\frac{I-E_{1}}{E_{1}} \times 100$
$=>\frac{45}{100} E_{1}+E_{1}=I$
$=>\frac{145 E_{1}}{100}=I$
$=>\frac{29 E_{1}}{20}=I$.
For Company B,
$35=\frac{I-E_{2}}{E_{2}} \times 100$
$=>\frac{35}{100} E_{2}+E_{2}=I$
$=>\frac{135 E_{2}}{100}=I$
$=>\frac{27 E_{2}}{20}=I \ldots \ldots(i i)$

From Eqs. (i) and (ii), we get
$\frac{29 E_{1}}{20}=\frac{29 E_{2}}{20}$
$\Rightarrow>\frac{E_{1}}{E_{2}}=\frac{27}{29}$
48. (4) $?=712+92 \times 0.50-83$
$=712+46-83=675$
49. (2) $?=416 \times 38 \times 0.4=6323.2$
50. (3) Number of females in HR departments
$=3250-1750=1500$
\therefore Required percentage $=\frac{1500}{3250} \times 100$
$=46.15=46 \%$
51. (1) Total number of employees from all the departments together
$=3250+3500+4750+4500+3250=19250$
52. (2) Ratio of the number of females or the number of males from the Marketing department
$=$ (3250-1500): 1500
= 1750:1500
=7:6
53. (5) Number of females in IT department $=4500-2500=2000$
54. (3) Total number of cards $=52$
$\mathrm{n}(\mathrm{S})={ }^{52} \mathrm{C}_{2}=1326$
There are four King cards. So, number of ways of drawing two cards from it $=\mathrm{n}(\mathrm{E})={ }^{4} \mathrm{C}_{2}=6$
$\therefore P(E)=\frac{6}{1326}=\frac{1}{221}$
55. (2) LCMof $6,8,9,12$ and 18 is 72

In an hour, they will ring together 3600/72 = 50 times
56. (3) Let initial price of one kg sugar be Rs. 100

Now, increased price of one kg sugar Rs. 160
Rs. $160 \rightarrow 1 \mathrm{~kg}$
Rs. $100->\frac{1}{160} \times 100=\frac{5}{8} \mathrm{~kg}$
Reduction $=1-\frac{5}{8}=\frac{3}{8} \mathrm{~kg}$
In one kg , reduction is $3 / 8 \mathrm{~kg}$
\therefore In 100 kg reduction $=\frac{3}{8} \times 100=\frac{300}{8}=37.5 \%$
Other Approach : $\frac{60}{100+60} \times 100=\frac{75}{2}=37.5 \%$
57. (5)
58. (4)
59. (4)
60. (2) $\quad \frac{1}{2}($ Sum of parallel lines $) \times \mathrm{h}=$ Area
$\frac{1}{2} \times(13+9) \times \mathrm{h}=231$
$\frac{1}{2} \times 22 \times \mathrm{h}=231 \quad \therefore \mathrm{~h}=21$ metre
61. (1) $\therefore \ln 2$ minutes $=(10-2)=8$ metre
$\therefore 12$ minutes $=48$ metres $\quad \therefore$ rest $=56-48=8 \mathrm{~m}$.
$\therefore \frac{8}{10} \times 60=48 \mathrm{sec}$.
\therefore Total time $=12$ minutes, 48 sec .
62. (1) $\frac{5555}{50}=111.1 \square 110$
63. (1) $(18)^{3}=5832 \cong 5830$
64. (3) $23 \times 19 \times 8 \cong 3500$
65. (4) $9999 \times \frac{1}{99} \times \frac{1}{9}=11.2 \cong 11$
66. (1) Only I follows. II does not follow.
67. (1)
68. (5) So neither I nor II follows.
69. (5) I follows but II does not.
70. (4) According to the above possible Venn-diagrams, both I and II follow.
71. (1) 1. The passage gives only one reason that in coming days the economy will be growing and for that modernization of airport is an important.
2. Can't be a reason because other countries are seeing India's as a important source of markets in the aviation sector.
3. Can't be a reason because India's is a big market for foreign countries.
4. Can't be a reason because it talks about passenger carrying capacity.
72. (4) The passage gives only two reasons :
I. Lot of political interference and
II. Disagreement on the share of revenue other points are not a constraints in the modernization of the airports.
73. (4) All the three points highlights in speeding up the modernization of airports.
74. (3) Check for (1) :
$\frac{\mathrm{P} \geq \mathrm{K} \geq \mathrm{S}}{\text { Combining }}<\underline{\mathrm{R} \leq \mathrm{M}<\mathrm{L}}$
$\mathrm{P} \geq \mathrm{S}<\mathrm{R}<\mathrm{L}$
So, this expression is true.
Check for (2) :

$$
\begin{aligned}
& \mathrm{P} \geq \frac{\mathrm{K}-\mathrm{S}}{\text { Combining }} \leq \mathrm{R}-\mathrm{M} \\
& \mathrm{P} \geq \mathrm{S} \leq \mathrm{R}<\mathrm{L}
\end{aligned}
$$

So, this expression is also true.
Checking for (3) :
$\frac{\mathrm{P}<\mathrm{K} \geq \mathrm{S}}{\text { No relation }}-\frac{\mathrm{R} \leq \mathrm{M} \leq \mathrm{L}}{\text { Combining }}$
$\mathrm{S}-\mathrm{R} \leq \mathrm{L}$
Thus this expression does not fit.
Check for (4) :
$\underline{\mathrm{P} \geq \mathrm{K} \geq \mathrm{S}}-\underline{\mathrm{R}}<\mathrm{M}<\mathrm{L}$
$\mathrm{P} \geq \mathrm{S}-\mathrm{R}<\mathrm{L}$
So, this expression is true for the given conditions.
75. (1) Check for (1) :
$\frac{\mathrm{P}>\mathrm{T}>\mathrm{S}}{\text { Combining }}-\frac{\mathrm{R}<\mathrm{N} \leq \mathrm{M}}{\text { Combining }}$
P $>\mathrm{S}-\mathrm{R}<\mathrm{M}$
So, the given statements are is true in this expression.
Check for (2) :
$\underset{\substack{\text { Comparison } \\ \text { is not possible }}}{\mathrm{P}>\mathrm{T}<\mathrm{S}}-\frac{\mathrm{R} \leq \mathrm{N}<\mathrm{M}}{\substack{\text { Combining } \\ \mathrm{R}<\mathrm{M}}}$
But can't say, $\mathrm{P} \neq \mathrm{S}$
Because, if $T-6$ and $P-8, S-8$
then also $\mathrm{P}>\mathrm{T}<\mathrm{S}$.
$8>6<8$ holds true.
Thus can't say exactly $\mathrm{P} \neq \mathrm{S}$
Therefore conditions not satisfied.
Check for (3) :
$\underline{\mathrm{P}-\mathrm{T}}<\mathrm{S}>\mathrm{R}>\mathrm{N} \leq \mathrm{M}$
$\mathrm{P}<\mathrm{S}>\mathrm{R}>\mathrm{N} \leq \mathrm{M}$
Thus $R<M$ does not hold true here.
Check for (4) :

$$
\underline{\mathrm{P}<\mathrm{T}>\mathrm{S}}<\mathrm{R} \leq \mathrm{N} \geq \mathrm{M}
$$

Therefore, following the same reason, as for (2), this expression also does not hold good for the given conditions.
76. (1)
77. (1)
78. (2)
79. (3)
80. (2)
81. (3)
82. (4)
83. (5)

From $\mathrm{I} \rightarrow \mathrm{T}, \mathrm{D}<\mathrm{M}$, But there is no information regarding, Q and S.
So, I alone is not sufficient. From II $-S>R ; S<T, Q$
But no information regarding P so, Il alone is not
sufficient. From I and II - R is youngest.
84. (3) From I-Anil's rank $\rightarrow 29^{\text {th }}$ from bottom.

Anil - 6 rank below Sanjay.
So, Sanjay rank $=29+6=35$ from bottom.
Sanjay's rank from top $=(50-35)+1=16^{\text {th }}$
So, I is sufficient.
From II - Pankaj's rank from bottom $=35^{\text {th }}$
Pankaj - $4^{\text {th }}$ ranks above Sanjay.
So, Sanjay rank from bottom $=35-4=31^{\text {st }}$
Sanjay's rank from top $=(50-31)+1=20$. So, II alone is sufficient.
85. (1)

From I-
So, second to the right of $\mathrm{P}-\mathrm{O}$
From II -
So, second to the right of $P \rightarrow$ either R or O .
Hence, O is second to the right of P.
86. (2)
87. (4)
88. (1)
89. (3)
90. (1)
91. (3)
92. (4)
93. (5)
94. (1)

Ravi id Radha's nephew.
li ko jee \rightarrow paper is tough
si pee jee \rightarrow competition is high
da li \rightarrow good paper
..(3)
pa si \rightarrow no competition
From (1) and (2)
si \rightarrow competition
So, jee \rightarrow is
From (2) and (4)
$\mathrm{pa} \rightarrow$ no
From (1) and (3)
$\mathrm{li} \rightarrow$ paper
So, da \rightarrow good
Hence, jee pa da \rightarrow no is good
95. (2)

96-100. He likes vanilla flavor \rightarrow kit da lee ra ...(1)
nobody likes too sweet flavor \rightarrow ra fi lee pi zo(2)
vanilla is my favourite \rightarrow chi da ye vo ...(3)
Sweet is best \rightarrow chi pi koo ...(4)
likes favourite \rightarrow ra ye (5)
From (1) and (5),
likes \rightarrow ra
from (5),
favourite \rightarrow ye
From (2) and (4),
sweet \rightarrow pi
From (3) and (4),
is \rightarrow chi
And from (4),
best \rightarrow koo
from (1) and (3)
vanilla \rightarrow da
From (1) and (2),
Flavour \rightarrow lee
From (1),
he \rightarrow s Kit
From (2),
nobody too \rightarrow zo fi
96. (1)
97. (3)
98. (4) nobody \rightarrow

Either zo or fi nobody likes vanilla \rightarrow zo or fi, ra da
99. (2) $\begin{array}{llll}\text { he } & \text { is } & \text { her } & \text { favourite } \\ \downarrow & \downarrow & \downarrow & \downarrow \\ & \text { kit } & \text { chi } & \text { mi }\end{array}$
100. (4)

